Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cells ; 12(21)2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37947653

RESUMEN

Using constitutive GRF1/2 knockout mice, we showed previously that GRF2 is a key regulator of nuclear migration in retinal cone photoreceptors. To evaluate the functional relevance of that cellular process for two putative targets of the GEF activity of GRF2 (RAC1 and CDC42), here we compared the structural and functional retinal phenotypes resulting from conditional targeting of RAC1 or CDC42 in the cone photoreceptors of constitutive GRF2KO and GRF2WT mice. We observed that single RAC1 disruption did not cause any obvious morphological or physiological changes in the retinas of GRF2WT mice, and did not modify either the phenotypic alterations previously described in the retinal photoreceptor layer of GRF2KO mice. In contrast, the single ablation of CDC42 in the cone photoreceptors of GRF2WT mice resulted in clear alterations of nuclear movement that, unlike those of the GRF2KO retinas, were not accompanied by electrophysiological defects or slow, progressive cone cell degeneration. On the other hand, the concomitant disruption of GRF2 and CDC42 in the cone photoreceptors resulted, somewhat surprisingly, in a normalized pattern of nuclear positioning/movement, similar to that physiologically observed in GRF2WT mice, along with worsened patterns of electrophysiological responses and faster rates of cell death/disappearance than those previously recorded in single GRF2KO cone cells. Interestingly, the increased rates of cone cell apoptosis/death observed in single GRF2KO and double-knockout GRF2KO/CDC42KO retinas correlated with the electron microscopic detection of significant ultrastructural alterations (flattening) of their retinal ribbon synapses that were not otherwise observed at all in single-knockout CDC42KO retinas. Our observations identify GRF2 and CDC42 (but not RAC1) as key regulators of retinal processes controlling cone photoreceptor nuclear positioning and survival, and support the notion of GRF2 loss-of-function mutations as potential drivers of cone retinal dystrophies.


Asunto(s)
Factor 2 Liberador de Guanina Nucleótido , Células Fotorreceptoras Retinianas Conos , Animales , Ratones , Ratones Noqueados , Retina , Células Fotorreceptoras Retinianas Conos/ultraestructura , Sinapsis/ultraestructura
2.
Nat Commun ; 14(1): 5856, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730692

RESUMEN

The impact of genetic ablation of SOS1 or SOS2 is evaluated in a murine model of KRASG12D-driven lung adenocarcinoma (LUAD). SOS2 ablation shows some protection during early stages but only SOS1 ablation causes significant, specific long term increase of survival/lifespan of the KRASG12D mice associated to markedly reduced tumor burden and reduced populations of cancer-associated fibroblasts, macrophages and T-lymphocytes in the lung tumor microenvironment (TME). SOS1 ablation also causes specific shrinkage and regression of LUAD tumoral masses and components of the TME in pre-established KRASG12D LUAD tumors. The critical requirement of SOS1 for KRASG12D-driven LUAD is further confirmed by means of intravenous tail injection of KRASG12D tumor cells into SOS1KO/KRASWT mice, or of SOS1-less, KRASG12D tumor cells into wildtype mice. In silico analyses of human lung cancer databases support also the dominant role of SOS1 regarding tumor development and survival in LUAD patients. Our data indicate that SOS1 is critically required for development of KRASG12D-driven LUAD and confirm the validity of this RAS-GEF activator as an actionable therapeutic target in KRAS mutant LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Fibroblastos Asociados al Cáncer , Neoplasias Pulmonares , Animales , Humanos , Ratones , Adenocarcinoma/genética , Adenocarcinoma del Pulmón/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Microambiente Tumoral/genética
3.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108381

RESUMEN

The isolation of the first human oncogene (HRAS), a critical breakthrough in cancer research, has occurred over forty years ago, and the identification of new pathogenic oncogenes has continuously grown since [...].


Asunto(s)
Oncogenes , Humanos
4.
Oncogenesis ; 12(1): 20, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37045830

RESUMEN

Spry2 is a molecular modulator of tyrosine kinase receptor signaling pathways that has cancer-type-specific effects. Mammalian Spry2 protein undergoes tyrosine and serine phosphorylation in response to growth factor stimulation. Spry2 expression is distinctly altered in various cancer types. Inhibition of the proteasome functionality results in reduced intracellular Spry2 degradation. Using in vitro and in vivo assays, we show that protein kinase D (PKD) phosphorylates Spry2 at serine 112 and interacts in vivo with the C-terminal half of this protein. Importantly, missense mutation of Ser112 decreases the rate of Spry2 intracellular protein degradation. Either knocking down the expression of all three mammalian PKD isoforms or blocking their kinase activity with a specific inhibitor contributes to the stabilization of Spry2 wild-type protein. Downregulation of CSN3, a component of the COP9/Signalosome that binds PKD, significantly increases the half-life of Spry2 wild-type protein but does not affect the stability of a Spry2 after mutating Ser112 to the non-phosphorylatable residue alanine. Our data demonstrate that both PKD and the COP9/Signalosome play a significant role in control of Spry2 intracellular stability and support the consideration of the PKD/COP9 complex as a potential therapeutic target in tumors where Spry2 expression is reduced.

5.
Methods Protoc ; 6(1)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36827501

RESUMEN

During all the stages of lung development, the lung mesoderm (or mesenchyme) is closely related to the endoderm, and their cross-regulation promotes, controls, and drives all lung developmental processes. Generation of 3D organoids in vitro, RNA assays, and mitochondrial respiration studies are used to analyze lung development and regeneration to better understand the interactions between epithelium and mesenchyme, as well as for the study of redox alterations and the metabolic status of the cells. Moreover, to avoid using immortalized cell lines in these in vitro approaches, standardized murine neonatal primary lung fibroblast isolation techniques are essential. Here, we present an optimized method to isolate, culture, and freeze primary lung fibroblasts from neonatal lungs. Our current method includes step-by-step instructions accompanied by graphical explanations and critical steps.

6.
Oncogene ; 42(5): 389-405, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36476833

RESUMEN

The R-RAS2 GTP hydrolase (GTPase) (also known as TC21) has been traditionally considered quite similar to classical RAS proteins at the regulatory and signaling levels. Recently, a long-tail hotspot mutation targeting the R-RAS2/TC21 Gln72 residue (Q72L) was identified as a potent oncogenic driver. Additional point mutations were also found in other tumors at low frequencies. Despite this, little information is available regarding the transforming role of these mutant versions and their relevance for the tumorigenic properties of already-transformed cancer cells. Here, we report that many of the RRAS2 mutations found in human cancers are highly transforming when expressed in immortalized cell lines. Moreover, the expression of endogenous R-RAS2Q72L is important for maintaining optimal levels of PI3K and ERK activities as well as for the adhesion, invasiveness, proliferation, and mitochondrial respiration of ovarian and breast cancer cell lines. Endogenous R-RAS2Q72L also regulates gene expression programs linked to both cell adhesion and inflammatory/immune-related responses. Endogenous R-RAS2Q72L is also quite relevant for the in vivo tumorigenic activity of these cells. This dependency is observed even though these cancer cell lines bear concurrent gain-of-function mutations in genes encoding RAS signaling elements. Finally, we show that endogenous R-RAS2, unlike the case of classical RAS proteins, specifically localizes in focal adhesions. Collectively, these results indicate that gain-of-function mutations of R-RAS2/TC21 play roles in tumor initiation and maintenance that are not fully redundant with those regulated by classical RAS oncoproteins.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Neoplasias , Humanos , Línea Celular , Proteínas de Unión al GTP Monoméricas/genética , Neoplasias/genética , Proteínas ras/genética , Proteínas ras/metabolismo , Transducción de Señal/genética
7.
J Voice ; 37(3): 468.e13-468.e21, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-33750624

RESUMEN

OBJECTIVE: To analyze the national and international literature on vocal health, working conditions and occupational health of telemarketers. METHODS: A literature review was conducted using the LILACS, PubMed and SciELO databases. The term "telemarketing" was used for all searches, along with the following descriptors: voice, vocal disorders, work condition and occupational health. Articles published in English, Portuguese or Spanish from 2009- 2019 were included. The variables selected for organizing the data were authors, region, first author's education, affiliation, journal, objective, sample, design, and result. RESULTS: A total of 540 publications were identified in the databases, and after applying the eligibility criteria, 14 articles were included in the final analysis. DISCUSSION: Of the articles selected for final analysis, there was a concentration of studies in 2014, with a new peak of resumption of research in 2019. Regarding Brazilian studies, there was a concentration of studies from the Southeast region, mostly developed by speech therapists. CONCLUSION: In the analyzed articles, it was possible to verify the interference of telemarketers' working conditions in their vocal and occupational health.


Asunto(s)
Enfermedades Profesionales , Salud Laboral , Trastornos de la Voz , Humanos , Condiciones de Trabajo , Enfermedades Profesionales/diagnóstico , Enfermedades Profesionales/etiología , Teléfono , Trastornos de la Voz/diagnóstico
8.
BMC Med Ethics ; 23(1): 109, 2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36368994

RESUMEN

BACKGROUND: Brazil is among the sixteen countries that conducts the most clinical trials in the world. It has a system to review research ethics with human beings made up by the National Commission on Research Ethics (CONEP) and 779 Research Ethics Committees (RECs), in 2017. The RECs are supposed to follow the same rules regarding their membership, although the RECs that review Social Science and Humanities (SSH) researches must respect Resolution 510/16. There are Brazilian RECs that review SSH and clinical trials. This study aimed to analyze the academic professional profile of the members of the CONEP and Brazilian RECs, their adequacy to the norms, and the challenges faced by the REC's Chairs to compose their membership. METHODS: All 779 Brazilian RECs' chairs are invited to fill in a questionnaire informing academic and professional background of the RECs members, and 92 answered. However, eight were excluded for having sent an incomplete questionnaire, leaving a total of 84 participants. The variables were described by absolute and relative frequency. The Chi-square test and ANOVA was used to analyze regional differences related difficulties to compose the committee. The significance level was 95%. RESULTS: The results showed a predominance of members from the biomedical area (57%), while 33% were members of the Social Sciences and Humanities and 5.5% were community representatives. As for the academic degree, there were (45.2%) PhD and (27.9%) masters. The divergences in relation to the guidelines result from the difficulties of having participants in some areas and the little interest in the work carried out by the committees. CONCLUSION: The RECs are partially adequate to the norms and their performance may be compromised by the low participation of community representatives. The organization of REC's specifics to review biomedical research could improve the ethical review process, ensuring a membership more qualified for these protocols.


Asunto(s)
Revisión Ética , Comités de Ética en Investigación , Humanos , Brasil , Ética en Investigación , Humanidades
9.
Cancers (Basel) ; 14(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36010887

RESUMEN

We showed previously that the ABL-mediated phosphorylation of SOS1 promotes RAC activation and contributes to BCR-ABL leukemogenesis, suggesting the relevant role of SOS1 in the pathogenesis of CML. To try and obtain direct experimental evidence of the specific mechanistic implication of SOS1 in CML development, here, we combined a murine model of CML driven by a p210BCR/ABL transgene with our tamoxifen-inducible SOS1/2-KO system in order to investigate the phenotypic impact of the direct genetic ablation of SOS1 or SOS2 on the pathogenesis of CML. Our observations showed that, in contrast to control animals expressing normal levels of SOS1 and SOS2 or to single SOS2-KO mice, p210BCR/ABL transgenic mice devoid of SOS1 presented significantly extended survival curves and also displayed an almost complete disappearance of the typical hematological alterations and splenomegaly constituting the hallmarks of CML. SOS1 ablation also resulted in a specific reduction in the proliferation and the total number of colony-forming units arising from the population of bone marrow stem/progenitor cells from p210BCR/ABL transgenic mice. The specific blockade of CML development caused by SOS1 ablation in p210BCR/ABL mice indicates that SOS1 is critically required for CML pathogenesis and supports the consideration of this cellular GEF as a novel, alternative bona fide therapeutic target for CML treatment in the clinic.

10.
Biomedicines ; 9(9)2021 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-34572343

RESUMEN

Recent reports have identified rare, biallelic damaging variants of the AGTPBP1 gene that cause a novel and documented human disease known as childhood-onset neurodegeneration with cerebellar atrophy (CONDCA), linking loss of function of the AGTPBP1 protein to human neurodegenerative diseases. CONDCA patients exhibit progressive cognitive decline, ataxia, hypotonia or muscle weakness among other clinical features that may be fatal. Loss of AGTPBP1 in humans recapitulates the neurodegenerative course reported in a well-characterised murine animal model harbouring loss-of-function mutations in the AGTPBP1 gene. In particular, in the Purkinje cell degeneration (pcd) mouse model, mutations in AGTPBP1 lead to early cerebellar ataxia, which correlates with the massive loss of cerebellar Purkinje cells. In addition, neurodegeneration in the olfactory bulb, retina, thalamus and spinal cord were also reported. In addition to neurodegeneration, pcd mice show behavioural deficits such as cognitive decline. Here, we provide an overview of what is currently known about the structure and functional role of AGTPBP1 and discuss the various alterations in AGTPBP1 that cause neurodegeneration in the pcd mutant mouse and humans with CONDCA. The sequence of neuropathological events that occur in pcd mice and the mechanisms governing these neurodegenerative processes are also reported. Finally, we describe the therapeutic strategies that were applied in pcd mice and focus on the potential usefulness of pcd mice as a promising model for the development of new therapeutic strategies for clinical trials in humans, which may offer potential beneficial options for patients with AGTPBP1 mutation-related CONDCA.

11.
Biomolecules ; 11(8)2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34439794

RESUMEN

Recent breakthroughs have reignited interest in RAS GEFs as direct therapeutic targets. To search for new inhibitors of SOS GEF activity, a repository of known/approved compounds (NIH-NACTS) and a library of new marine compounds (Biomar Microbial Technologies) were screened by means of in vitro RAS-GEF assays using purified, bacterially expressed SOS and RAS constructs. Interestingly, all inhibitors identified in our screenings (two per library) shared related chemical structures belonging to the anthraquinone family of compounds. All our anthraquinone SOS inhibitors were active against the three canonical RAS isoforms when tested in our SOS GEF assays, inhibited RAS activation in mouse embryonic fibroblasts, and were also able to inhibit the growth of different cancer cell lines harboring WT or mutant RAS genes. In contrast to the commercially available anthraquinone inhibitors, our new marine anthraquinone inhibitors did not show in vivo cardiotoxicity, thus providing a lead for future discovery of stronger, clinically useful anthraquinone SOS GEF blockers.


Asunto(s)
Antraquinonas/farmacología , Antineoplásicos/farmacología , GTP Fosfohidrolasas/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Cardiotoxicidad/prevención & control , Línea Celular Transformada , Línea Celular Tumoral , Doxorrubicina/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Idarrubicina/farmacología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína SOS1/genética , Proteína SOS1/metabolismo , Proteínas Son Of Sevenless/deficiencia , Proteínas Son Of Sevenless/genética
12.
Int J Mol Sci ; 22(12)2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205562

RESUMEN

The SOS family of Ras-GEFs encompasses two highly homologous and widely expressed members, SOS1 and SOS2. Despite their similar structures and expression patterns, early studies of constitutive KO mice showing that SOS1-KO mutants were embryonic lethal while SOS2-KO mice were viable led to initially viewing SOS1 as the main Ras-GEF linking external stimuli to downstream RAS signaling, while obviating the functional significance of SOS2. Subsequently, different genetic and/or pharmacological ablation tools defined more precisely the functional specificity/redundancy of the SOS1/2 GEFs. Interestingly, the defective phenotypes observed in concomitantly ablated SOS1/2-DKO contexts are frequently much stronger than in single SOS1-KO scenarios and undetectable in single SOS2-KO cells, demonstrating functional redundancy between them and suggesting an ancillary role of SOS2 in the absence of SOS1. Preferential SOS1 role was also demonstrated in different RASopathies and tumors. Conversely, specific SOS2 functions, including a critical role in regulation of the RAS-PI3K/AKT signaling axis in keratinocytes and KRAS-driven tumor lines or in control of epidermal stem cell homeostasis, were also reported. Specific SOS2 mutations were also identified in some RASopathies and cancer forms. The relevance/specificity of the newly uncovered functional roles suggests that SOS2 should join SOS1 for consideration as a relevant biomarker/therapy target.


Asunto(s)
Proteína SOS1/fisiología , Proteínas Son Of Sevenless/fisiología , Animales , Humanos , Neoplasias/metabolismo
13.
Genes (Basel) ; 12(5)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062774

RESUMEN

It has been over forty years since the isolation of the first human oncogene (HRAS), a crucial milestone in cancer research made possible through the combined efforts of a few selected research groups at the beginning of the 1980s. Those initial discoveries led to a quantitative leap in our understanding of cancer biology and set up the onset of the field of molecular oncology. The following four decades of RAS research have produced a huge pool of new knowledge about the RAS family of small GTPases, including how they regulate signaling pathways controlling many cellular physiological processes, or how oncogenic mutations trigger pathological conditions, including developmental syndromes or many cancer types. However, despite the extensive body of available basic knowledge, specific effective treatments for RAS-driven cancers are still lacking. Hopefully, recent advances involving the discovery of novel pockets on the RAS surface as well as highly specific small-molecule inhibitors able to block its interaction with effectors and/or activators may lead to the development of new, effective treatments for cancer. This review intends to provide a quick, summarized historical overview of the main milestones in RAS research spanning from the initial discovery of the viral RAS oncogenes in rodent tumors to the latest attempts at targeting RAS oncogenes in various human cancers.


Asunto(s)
Genética/historia , Proteínas ras/genética , Animales , Carcinogénesis/genética , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Transducción de Señal , Proteínas ras/metabolismo
14.
Oncogene ; 40(27): 4538-4551, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34120142

RESUMEN

SOS1 ablation causes specific defective phenotypes in MEFs including increased levels of intracellular ROS. We showed that the mitochondria-targeted antioxidant MitoTEMPO restores normal endogenous ROS levels, suggesting predominant involvement of mitochondria in generation of this defective SOS1-dependent phenotype. The absence of SOS1 caused specific alterations of mitochondrial shape, mass, and dynamics accompanied by higher percentage of dysfunctional mitochondria and lower rates of electron transport in comparison to WT or SOS2-KO counterparts. SOS1-deficient MEFs also exhibited specific alterations of respiratory complexes and their assembly into mitochondrial supercomplexes and consistently reduced rates of respiration, glycolysis, and ATP production, together with distinctive patterns of substrate preference for oxidative energy metabolism and dependence on glucose for survival. RASless cells showed defective respiratory/metabolic phenotypes reminiscent of those of SOS1-deficient MEFs, suggesting that the mitochondrial defects of these cells are mechanistically linked to the absence of SOS1-GEF activity on cellular RAS targets. Our observations provide a direct mechanistic link between SOS1 and control of cellular oxidative stress and suggest that SOS1-mediated RAS activation is required for correct mitochondrial dynamics and function.


Asunto(s)
Dinámicas Mitocondriales , Homeostasis , Factores de Intercambio de Guanina Nucleótido ras
15.
Cancers (Basel) ; 13(9)2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946974

RESUMEN

Prior reports showed the critical requirement of Sos1 for epithelial carcinogenesis, but the specific functionalities of the homologous Sos1 and Sos2 GEFs in skin homeostasis and tumorigenesis remain unclear. Here, we characterize specific mechanistic roles played by Sos1 or Sos2 in primary mouse keratinocytes (a prevalent skin cell lineage) under different experimental conditions. Functional analyses of actively growing primary keratinocytes of relevant genotypes-WT, Sos1-KO, Sos2-KO, and Sos1/2-DKO-revealed a prevalent role of Sos1 regarding transcriptional regulation and control of RAS activation and mechanistic overlapping of Sos1 and Sos2 regarding cell proliferation and survival, with dominant contribution of Sos1 to the RAS-ERK axis and Sos2 to the RAS-PI3K/AKT axis. Sos1/2-DKO keratinocytes could not grow under 3D culture conditions, but single Sos1-KO and Sos2-KO keratinocytes were able to form pseudoepidermis structures that showed disorganized layer structure, reduced proliferation, and increased apoptosis in comparison with WT 3D cultures. Remarkably, analysis of the skin of both newborn and adult Sos2-KO mice uncovered a significant reduction of the population of stem cells located in hair follicles. These data confirm that Sos1 and Sos2 play specific, cell-autonomous functions in primary keratinocytes and reveal a novel, essential role of Sos2 in control of epidermal stem cell homeostasis.

16.
Methods Mol Biol ; 2262: 361-395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33977490

RESUMEN

Animal models have become in recent years a crucial tool to understand the physiological and pathological roles of many cellular proteins. They allow analysis of the functional consequences of [1] complete or partial (time- or organ-limited) removal of specific proteins (knockout animals), [2] the exchange of a wild-type allele for a mutant or truncated version found in human illnesses (knock-in), or [3] the effect of overexpression of a given protein in the whole body or in specific organs (transgenic mice). In this regard, the study of phenotypes in Ras GEF animal models has allowed researchers to find specific functions for otherwise very similar proteins, uncovering their role in physiological contexts such as memory formation, lymphopoiesis, photoreception, or body homeostasis. In addition, mouse models have been used to unveil the functional role of Ras GEFs under pathological conditions, including Noonan syndrome, skin tumorigenesis, inflammatory diseases, diabetes, or ischemia among others. In the following sections, we will describe the methodological approaches employed for Ras GEF animal model analyses, as well as the main discoveries made.


Asunto(s)
Modelos Animales de Enfermedad , Marcación de Gen/métodos , Homeostasis , Isquemia/patología , Neoplasias/patología , Factores de Intercambio de Guanina Nucleótido ras/metabolismo , Animales , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Isquemia/genética , Isquemia/metabolismo , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Neurogénesis , Factores de Intercambio de Guanina Nucleótido ras/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido ras/genética
17.
Biochim Biophys Acta Rev Cancer ; 1874(2): 188445, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33035641

RESUMEN

SOS1 and SOS2 are the most universal and widely expressed family of guanine exchange factors (GEFs) capable or activating RAS or RAC1 proteins in metazoan cells. SOS proteins contain a sequence of modular domains that are responsible for different intramolecular and intermolecular interactions modulating mechanisms of self-inhibition, allosteric activation and intracellular homeostasis. Despite their homology, analyses of SOS1/2-KO mice demonstrate functional prevalence of SOS1 over SOS2 in cellular processes including proliferation, migration, inflammation or maintenance of intracellular redox homeostasis, although some functional redundancy cannot be excluded, particularly at the organismal level. Specific SOS1 gain-of-function mutations have been identified in inherited RASopathies and various sporadic human cancers. SOS1 depletion reduces tumorigenesis mediated by RAS or RAC1 in mouse models and is associated with increased intracellular oxidative stress and mitochondrial dysfunction. Since WT RAS is essential for development of RAS-mutant tumors, the SOS GEFs may be considered as relevant biomarkers or therapy targets in RAS-dependent cancers. Inhibitors blocking SOS expression, intrinsic GEF activity, or productive SOS protein-protein interactions with cellular regulators and/or RAS/RAC targets have been recently developed and shown preclinical and clinical effectiveness blocking aberrant RAS signaling in RAS-driven and RTK-driven tumors.


Asunto(s)
Mutación , Neoplasias/genética , Proteínas Son Of Sevenless/genética , Proteínas Son Of Sevenless/metabolismo , Regulación Alostérica , Animales , Homeostasis , Humanos , Ratones , Neoplasias/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas ras/metabolismo
18.
Cell Death Dis ; 10(11): 838, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31685810

RESUMEN

We reported previously that adult (HRAS-/-; NRAS-/-) double knockout (DKO) mice showed no obvious external phenotype although lower-than-expected numbers of weaned DKO animals were consistently tallied after crossing NRAS-KO and HRAS-KO mice kept on mixed genetic backgrounds. Using mouse strains kept on pure C57Bl/6 background, here we performed an extensive analysis of the offspring from crosses between HRAS-KO and NRAS-KO mice and uncovered the occurrence of very high rates of perinatal mortality of the resulting DKO littermates due to respiratory failure during the first postnatal 24-48 h. The lungs of newborn DKO mice showed normal organ structure and branching but displayed marked defects of maturation including much-reduced alveolar space with thick separating septa and significant alterations of differentiation of alveolar (AT1, AT2 pneumocytes) and bronchiolar (ciliated, Clara cells) cell lineages. We also observed the retention of significantly increased numbers of undifferentiated progenitor precursor cells in distal lung epithelia and the presence of substantial accumulations of periodic acid-Schiff-positive (PAS+) material and ceramide in the lung airways of newborn DKO mice. Interestingly, antenatal dexamethasone treatment partially mitigated the defective lung maturation phenotypes and extended the lifespan of the DKO animals up to 6 days, but was not sufficient to abrogate lethality in these mice. RNA microarray hybridization analyses of the lungs of dexamethasone-treated and untreated mice uncovered transcriptional changes pointing to functional and metabolic alterations that may be mechanistically relevant for the defective lung phenotypes observed in DKO mice. Our data suggest that delayed alveolar differentiation, altered sphingolipid metabolism and ceramide accumulation are primary contributors to the respiratory stress and neonatal lethality shown by DKO mice and uncover specific, critical roles of HRAS and NRAS for correct lung differentiation that are essential for neonatal survival and cannot be substituted by the remaining KRAS function in this organ.


Asunto(s)
Bronquios , Diferenciación Celular , Proteínas de Unión al GTP Monoméricas/deficiencia , Proteínas Proto-Oncogénicas p21(ras)/deficiencia , Alveolos Pulmonares , Insuficiencia Respiratoria , Animales , Bronquios/crecimiento & desarrollo , Bronquios/patología , Ratones , Ratones Noqueados , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Alveolos Pulmonares/crecimiento & desarrollo , Alveolos Pulmonares/patología , Insuficiencia Respiratoria/genética , Insuficiencia Respiratoria/metabolismo , Insuficiencia Respiratoria/patología
19.
J Neurosci ; 39(32): 6325-6338, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31182637

RESUMEN

Ras/Raf/MEK/ERK (Ras-ERK) signaling has been implicated in the effects of drugs of abuse. Inhibitors of MEK1/2, the kinases upstream of ERK1/2, have been critical in defining the role of the Ras-ERK cascade in drug-dependent alterations in behavioral plasticity, but the Ras family of small GTPases has not been extensively examined in drug-related behaviors. We examined the role of Ras Guanine Nucleotide Releasing Factor 1 (RasGRF1) and 2 (RasGRF2), upstream regulators of the Ras-ERK signaling cascade, on cocaine self-administration (SA) in male mice. We first established a role for Ras-ERK signaling in cocaine SA, demonstrating that pERK1/2 is upregulated following SA in C57BL/6N mice in striatum. We then compared RasGRF1 and RasGRF2 KO mouse lines, demonstrating that cocaine SA in RasGRF2 KO mice was increased relative to WT controls, whereas RasGRF1 KO and WT mice did not differ. This effect in RasGRF2 mice is likely mediated by the Ras-ERK signaling pathway, as pERK1/2 upregulation following cocaine SA was absent in RasGRF2 KO mice. Interestingly, the lentiviral knockdown of RasGRF2 in the NAc had the opposite effect to that in RasGRF2 KO mice, reducing cocaine SA. We subsequently demonstrated that the MEK inhibitor PD325901 administered peripherally prior to cocaine SA increased cocaine intake, replicating the increase seen in RasGRF2 KO mice, whereas PD325901 administered into the NAc decreased cocaine intake, similar to the effect seen following lentiviral knockdown of RasGRF2. These data indicate a role for RasGRF2 in cocaine SA in mice that is ERK-dependent, and suggest a differential effect of global versus site-specific RasGRF2 inhibition.SIGNIFICANCE STATEMENT Exposure to drugs of abuse activates a variety of intracellular pathways, and following repeated exposure, persistent changes in these pathways contribute to drug dependence. Downstream components of the Ras-ERK signaling cascade are involved in the acute and chronic effects of drugs of abuse, but their upstream mediators have not been extensively characterized. Here we show, using a combination of molecular, pharmacological, and lentiviral techniques, that the guanine nucleotide exchange factor RasGRF2 mediates cocaine self-administration via an ERK-dependent mechanism, whereas RasGRF1 has no effect on responding for cocaine. These data indicate dissociative effects of mediators of Ras activity on cocaine reward and expand the understanding of the contribution of Ras-ERK signaling to drug-taking behavior.


Asunto(s)
Trastornos Relacionados con Cocaína/fisiopatología , Cocaína/farmacología , Cuerpo Estriado/fisiopatología , Sistema de Señalización de MAP Quinasas/fisiología , Recompensa , Factores de Intercambio de Guanina Nucleótido ras/fisiología , Acetilación , Animales , Benzamidas/farmacología , Cocaína/administración & dosificación , Condicionamiento Operante , Cuerpo Estriado/efectos de los fármacos , Difenilamina/análogos & derivados , Difenilamina/farmacología , Técnicas de Silenciamiento del Gen , Vectores Genéticos/genética , Histonas/metabolismo , Lentivirus/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiopatología , Especificidad de Órganos , Fosforilación , Procesamiento Proteico-Postraduccional , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Autoadministración , Factores de Intercambio de Guanina Nucleótido ras/deficiencia , Factores de Intercambio de Guanina Nucleótido ras/genética , ras-GRF1/deficiencia , ras-GRF1/genética , ras-GRF1/fisiología
20.
Neurobiol Dis ; 127: 312-322, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30905767

RESUMEN

The Purkinje cell (PC) degeneration (pcd) mouse harbors a mutation in Agtpbp1 gene that encodes for the cytosolic carboxypeptidase, CCP1. The mutation causes degeneration and death of PCs during the postnatal life, resulting in clinical and pathological manifestation of cerebellar ataxia. Monogenic biallelic damaging variants in the Agtpbp1 gene cause infantile-onset neurodegeneration and cerebellar atrophy, linking loss of functional CCP1 with human neurodegeneration. Although CCP1 plays a key role in the regulation of tubulin stabilization, its loss of function in PCs leads to a severe nuclear phenotype with heterochromatinization and accumulation of DNA damage. Therefore, the pcd mice provides a useful neuronal model to investigate nuclear mechanisms involved in neurodegeneration, particularly the nucleolar stress. In this study, we demonstrated that the Agtpbp1 gene mutation induces a p53-dependent nucleolar stress response in PCs, which is characterized by nucleolar fragmentation, nucleoplasmic and cytoplasmic mislocalization of nucleolin, and dysfunction of both pre-rRNA processing and mRNA translation. RT-qPCR analysis revealed reduction of mature 18S rRNA, with a parallel increase of its intermediate 18S-5'-ETS precursor, that correlates with a reduced expression of Fbl mRNA, which encodes an essential factor for rRNA processing. Moreover, nucleolar alterations were accompanied by a reduction of PTEN mRNA and protein levels, which appears to be related to the chromosome instability and accumulation of DNA damage in degenerating PCs. Our results highlight the essential contribution of nucleolar stress to PC degeneration and also underscore the nucleoplasmic mislocalization of nucleolin as a potential indicator of neurodegenerative processes.


Asunto(s)
Nucléolo Celular/metabolismo , Proteínas de Unión al GTP/metabolismo , Fosfoproteínas/metabolismo , Células de Purkinje/metabolismo , Proteínas de Unión al ARN/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Animales , Proteínas de Unión al GTP/genética , Ratones , Mutación , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Células de Purkinje/patología , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética , Nucleolina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...